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Monte Carlo Simulation and Stochastic FEA are used to predict

randomness in the free vibration response of thin unsymmetrically lam-

inated beams. For the present study, it is assumed that randomness in

the response is only caused by uncertainties in the ply orientations. The

ply orientations may become random or uncertain during the manufac-

turing process. A new 16-dof beam element, based on the first-order

shear deformation beam theory, is used to study the stochastic nature of

the natural frequencies. Using variational principles, the element stiff-

ness matrix and mass matrix are obtained through analytical integration.

Using a random sequence a large data set is generated, containing pos-

sible random ply-orientations. This data is assumed to be symmetric.

The stochastic-based finite element model for free vibrations predicts

the relation between the randomness in fundamental natural frequen-

cies and the randomness in ply-orientation. The sensitivity derivatives

are calculated numerically through an exact formulation. The squared

fundamental natural frequencies are expressed in terms of deterministic

and probabilistic quantities, allowing to determine how sensitive they

are to variations in ply angles. The predicted mean-valued fundamental

natural frequency squared and the variance of the present model are in

good agreement with Monte Carlo Simulation. Results, also, show that

variations between ±5 ° in ply-angles can affect free vibration response of

unsymmetrically and symmetrically laminated beams.

INTRODUCTION

In recent years, there has been an increasing de-

mand for laminated composite materials in aircraft

structures. The main reasons are that the compos-

ites posses the following characteristics: lightweight,

cost-effective, and can handle different strengths in

different directions I. However, these materials offer

quite a few challenges to structural engineers. Be-

cause of their inherent complexity, laminated struc-

tures can be difficult to manufacture according to

their exact design specifications, resulting in un-
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wanted uncertainties.

The design and analysis using conventional mate-

rials is easier than those using composites because,

for conventional materials, both material and most

geometric properties have either little or weft known

variation from their nominal value. On the other

hand, the same cannot be said for the design of struc-

tures using laminated composite materials. The

understanding of uncertainties in the laminate com-

posite structures is highly important for an accurate

design and analysis of aerospace and other structures

using composite materials.

These uncertainties are defined as random-

ness from non-cognitive sources involving physical

stochastic likelihood and human factors 2. This ran-

domness can occur in each laver and involve quan-
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titles such as: ply-orientations, thickness, density,

and material properties among others. Such varia-

tions can affect the behavior of the structure.

What has intrigued many engineers to study

structures with laminated composites is the com-

plexity of these materials. Since it is costly to an-

alyze a composite structure as a three-dimensional

solid, analysis of many composite structures can be

performed using laminated one and two dimensional

theories, such _ beam theory. A review of vari-

ous available theories for analyzing laminated beams

is given by Raciti and Kapania 3. Earlier, a 12-dof

element was developed and formulated for deter-

ministic symmetric laminated beams to study their

static and dynamic behaviors 4. Later a 20-dof el-

ement (Kapania-Raciti Element) was developed to

study static, free vibration, buckling, and nonlinear

vibrational analysis of unsymmetrically laminated

beams 5'6. In both works the effects of uncertain-

ties were not considered.

In considering uncertainties in a system, one can

consider three different approaches: (i) probabilistic

methods. (ii) fuzzy set or possibility-based meth-

ods, and (iii) antioptimization r. Here, however, only

the probabilistic approach is considered. The prob-

abilistic analysis can be performed using either an

analytical or a computational approach. An ana-

lytical approach would be most accurate although

cumbersome and impractical except for very sim-

ple systems. However, with the availability of ex-

tremely fast computers, the finite element method

has become a widely used technique for design and

analysis in engineering. Therefore, a finite element

approach using Monte Carlo Simulation is developed

to take into account the stochastic nature of the ply-

orientations.

Work done by Vinckenroy s presents a new tech-

nique to analyze these structures by combining the

stochastic analysis and the finite element method in

structural design. Agrawal et al. 9 used a wavelet-

based stochastic analysis to analyze isotropic beam

structures.

Librescu et al. 1° studied the free vibration and

reliability of cantilever composite beams featuring

structural uncertainties. They used a Stochastic

Rayieigh-Ritz formulation. However, to the best of

the authors' knowledge, no work has been found re-

garding the effect of uncertainties incurring in the

ply-orientations on the natural frequencies of thin

unsymmetrically laminated beams using Stochastic

Finite Element Analysis.

The primary goal of this investigation is to pre-

dict the dynamic behavior of thin unsymmetricalIy

laminated beams with uncertainties. In order to

study the stochastic nature of the dynamic response

of such beams, a new 16-dof element is developed

using first-order shear deformation beam theo_, to

account for uncertainties. Only an overview of this

element is presented here, and a more detailed anal-

ysis of this new 16-dof element will be presented

elsewhere. Using this element the free vibration

analysis is performed for only those uncertainties as-

sociated with layer-wise ply-orientations.

16-DOF LAMINATED BEAM ELEMENT

An overview

The present 16-dof laminated beam element takes

into account the existence of various coupling ef-

fects, which play a major roll in laminate composite

materials. This element is valid for the analysis

of both symmetric and unsymmetrically laminated

beams. The motivation to develop a new beam ele-

ment was to have a formulation consistent with the

first-order shear deformation beam theory (FSDT),

able to analyze unsymmetricaliy laminated beams,

and that would account for most of the uncertainties

involved in a thin laminated beam when modelled

using FSDT. In the present work. the reference sys-

tem of coordinate is such that the x- axis lies

along the length of the beam and the z - axis is

placed at the mid-surface measuring the transverse

displacements. The present work assumes that the

x - z plane divides the beam in two identical parts:

in other words, material, geometry., and loading are

symmetric about the x - z plane. When considering

twisting and ignoring in-plane shear, the displace-

ment field for the first-order shear deformation beam

theory, in the defined reference system, can be ex-

pressed as follows

U(z,y,z) = u(x) _ zo(x) (la)

V(z,y,:) = 0 (lb)

W(x,y,z) = w(_)- y_(z) (ic)

Therefore, the finite element formulation considers

eight degrees of freedom at each node: axial dis-

placement u, transverse deflection w, rotation of the

transverse normals ¢, twist angle r. and their deriva-

tives with respect to x. These nodal displacements

are denoted as

U,W,W ,O,O.7.{qI=(u,' , , ,}r (2)

The deflection behavior of the beam element for the

first-order theory including transverse twist effect is
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described as follows

u(z) = ,% ut + N2 u_ + ,V3u2 + N4 u_
w(x) = Nlwl+N2@+N3w_+N4w"

N' - (3)O(z) = Nt¢_t+ 2¢,+N3¢_+N4¢'2
r(x) = N, r, + N2 v{ + N3"r2 + N4"c_

where the shape functions N,(x) are the well known

Hermitian polynomials.

Constitutive Material Law

In thisinvestigation,alllaminated composites are

considered as orthotropic materials. Also, consider-

ing a state of plane stressand eliminating ezz from

the stress-strainrelationship,the reduced material

coefficientsare expressed as Qu' Since in laminated

composites each ply may have differentorientation,

the stresses are expressed in terms of an arbitrary

angle 9 and the transformed stress-strainrelation-

ship takes the form of 11

O'xy =

CYyZ

.0" _:z

Qll

Q Y2

QlG

0

0

Qr_ Ql6 0 0
Q_2 Q26 0 0
Q_6 Q66 0 0

0 0 Q44 Q45
0 0 U745 q55

(4)

I ex x }

eyy

2 e_

2 evz

2 e_z

where Q,j are the transformed stresses t.

[A], [B], [D] Matrices

The extensional matrix [A], the extensional-

bending coupling matrix [B], and the bending stiff-

ness matrix [D] are of great importance in the

present work and these are calculated as follows 11

Nta.,

a,j = E Q'i (zk+t - z_) i,j = 1,2,6 (5)
k=l

Nla_

aij = K E -Qu (z_'+' - zk) i,j = 4,5 (6)
k=l

B,) = E -Q'J zk+_ z_ i,j = 1,2,6 (7)

k=l

D,j = _ _,j i,j = 1,2,6 (8)
k=l

where K = 5g, the shear correction factor n, and

Ntam is the total number of plies considered. When

considering symmetrically laminated composites, [B]

is identically zero and the coupling between bending

and stretching vanish. However, for unsymmetri-

cally laminated beams the coupling cannot be ig-

nored and it must be included in the analysis. In the

presence of uncertainties, laminate composite struc-

tures are no longer symmetric and the analysis of

unsymmetrically laminated structures is a more ac-

curate one.

Laminate Constitutive Relations

The basic constitutive relation is

{N} = [D] {_} (9)

where {N} r is the stress resultant vector, [D] is the

bending-stiffness matrix, and {a}r is the stretching

and bending strain vector.

The displacement field, Eq. (1), suggests that

2e_y = 7_u+z_u=O (10)

Therefore, ,,V. u and M._ are not considered because

they vanish in the strain energy formulation. In ad-

dition, the present formulation assumes:

Myr _ = Nyy =0 (11)

This leads to the following bending-stiffness matrix:

where

[ [D,,t] [Dt.z,l ] (12)[D]= [D,,.,I [DH.H]

An Btl ] (13)[Dr,t] = B,_ D,t

[ A,2 B,_ ] (14)[Dt,nl = Bt2 O,2

[ +4t_' Bt2 I (15){Dtt,1] = B,2 D,_

[ ,4_. B_ ] (16)[Dtt.tt] = B2_ O_.'2

bending-stiffness matrix isThe reduced form of the

calculated as

[DR] = fDt,,] - [DLnl [D,t,HI -_ IDH,,] (17)

Using the above expression, an equivalent

bending-stiffness matrix [D_] for a thin unsymmet-

rically laminated beam is found:

Dc, t Dc,_ 0

D_,_ D_ 0

0 0 D¢:,_

0 0 Dc_,

0 _zz
DC34 t;::

(is)
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where,

A = B_2 - AND22

Dot, =(A22 Bt22 - 2A12 B12 B22-.

All B_2 + At22 D22 - ,411.422 D22)/A

The minimization of Eq. (21) results in the element

stiffness matrix for the 16-dof laminated beam ele-

ment:

(K't Jo
(22)

Dc,_ =(B_2 B__2 + Bll B_2 + A22 Bn Dn-

An Bn Dr2 - A22 Bu Dn + At2 B12 D22)/A

D_2 =(B_2 Dil - 2 Bi2 Bn Dl2+

where bo is the width of the beam, e_ is the length

of the beam element, and [Dc] is the equivalent

bending-stiffness matrix.

Element Mass Matrix

The kinetic energy for this 16-dof beam element

is

Dcaa --A44

Dc_, =A45

Dc,, =A,55
7" = _ p (Y2 + + fiz_"

V

Note that the availability of symbolic manipula-

tor like MATHEMATICA®Version 4.0 $ has made it

possible to determine the above matrix analytically,

By obtaining this matrix analytically, the CPU time

is saved, a great help in the Monte Carlo Simulation.

Strain-Displacement Relationship

The strains in the above formulation are related

to the displacements as follows:

{_} = _ = 0-7 (t9)
7yz --r

Using; Eqs. (2), (3) and ([9) the strain-displacement

relation can be expressed as

{d = [B, ai {q} (20)

where [Bsul is the s_rain-displacement maCrix.

Element Stiffness Matrix

Using Eqs. (9) and (20), and noting that matrix

IDol has been integrated throughout the thickness,

the strain energy for this new 16-dof beam element

becomes

lJ/ 1U = 7)_{q}V [B_alr [D_l[B_ai dA {q} (21)

_ Mathematw_ is a registered trademark of Wolfram _

search, Inc.

where p is the mass density. The mass matrix is

obtained by substituting Eq. (1) into Eq. (23) and

then taking the first variation of the kinetic energy:

0-/ 0-r 07" 5 /)7".
ST= ou aw ao":z---Su+ -z-6w + ":?= O + -_rOr (24)

The mass matrix coefficients are obtained as follows

6w i

5_

[10L t' N,(x)Nj(x)dx] a,+
(25)

(26)

_,+ (27)

(28)
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where

Nla_

Io = bo _ pk (zk+i - zk) (29)
k=l

I, =boE: 2-- (30)
k=/

=boE (31)
k=t 3

bozN,°.
j= = ]2 _ pk (zk+l -- zk) (32)

k=l

In the present work, analytical expressions for co-

efficients of both mass and stiffness matrices are

obtained. Once again, this greatly saves CPU time

for the Monte Carlo Simulation as one no longer has

to perform numerical integration for each case.

FREE VIBRATION ANALYSIS

The Hamilton's principle is used to study the dy-

namic nature of the structure. The principle uses

the Lagrangian which is defined as

/: = T-U-V (33)

where,

T is the total kinetic energy defined by Eq. (23)

/4 is the total strain energy defined by Eq. (21)

)2 is the potential of the applied loads

The Hamilton's Principle can be represented as 13

g_ = {&T - &lA- 5V} dt = 0 (34)
1

The free vibration analysis is obtained by setting

6),' = 0 in Eq. (34). This leads to the free-vibration

equations of motion for the defined finite element

problem:

[M] {/i/} + [K] {q} = 0 (35)

where [AI] is the mass matrix and [K 1 is the stiffness

matrix. Further assuming a harmonic response, the

solution of these equations results in an eigenvalue

problem:

[[K] - w_" [M]] {q} = 0 (36)

A PROBABILISTIC APPROACH

An overview

The present analysis assumes that the random

data is symmetrically distributed. Therefore, it as-

sumes normal distribution14:

f(x) = _ exp -_ (37)

where a 2 is the variance of the random variable: and

# is the mean value of the random variable. [n the

present work, the random variables are considered

as independent and are denoted as

= = {el,62,. ,o.} (38)

where 8i's are the ply-angles.

Various methods exist to analyze an uncertain

unsymmetrically laminated beam by integrating

stochastic aspects into the finite element modelling:

perturbation techniques, Taylor Series, and Monte

Carlo Simulation. These techniques have been used

in the past two decades in fields involving random-

ness. Especially, in the last decade there has been a

growing interest in applying these methods to better

understand laminated composite structures. More-

over, with the finite element technique becoming so

popular, there has been a new interest in integrat-

ing the stochastic nature of the structure in the finite

element analysis 15.

Monte Carlo Simulation

Monte Carlo Simulation, although computation-

ally expensive, methods are quite versatile tech-

niques capable of hand[{ng situations where other

methods fail to succeed. The MCS is also used

to verify the results obtained from other methods.

Monte Carlo Simulation methods are based on the

use of random numbers and probability statistics to

investigate problems. For purposes of the present

work a random number generator is used to generate

possible angle-variations between -5.0 ° and 5.0 ° .

A large sample is generated and then using PDF's

one evaluates the probability of having such values.

The larger the number of simulations more the con-

fidence in the probability distribution of the results

obtained. Therefore, for the present analysis at least

ten thousand realizations of the uncertain beam are

performed, increasing the accuracy of the ply-angle

distribution fitted to the sample data.

Stochastic Eigenvalue Analysis

The stochastic eigenvalues problem is expressed as

[g- AM] {0} = 0 (39)

where K, M, )_, and 0 are the stochastic stiffness

matrix, mass matrix, eigenvalues and eigenvectors,

respectively.

The presence of uncertainties in ply angle orienta-

tions results in certain randomness in the extensional

matrix [A], bending-stretching coupling matrix [B],

and bending matrix IDI. Since the coefficients of

these matrices are present in the equivalent bend-

ing stiffness matrix [D_ I, F.q. (18), the matrix [De]
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will have certain randomness associated as well and

these uncertainties are expressed as

[Dc] = D_ ° + De s (40)

of their mean-centered zeroth-, first-, and second-

order rates of change with respect to the random

variables as

Eigenvalues

where Dc ° is the equivalent bending stiffness ma-

trix evaluated at the ply mean values and De s is

the equivalent bending stiffness matrix taking into

account the random nature of the problem. As a

result, these uncertainties affect the stiffness ma-

trix. However, the mass matrix is not affected when

only considering those uncertainties involving ply-

orientations. Therefore, the mass matrix M is eval-

uated at the given deterministic values.

In problems where uncertainties are considered,

there exists no density function describing the ran-

dora nature of the system. The information is lim-

ited to only the mean values of the random vari-

ables. In such cases, perturbations techniques are

suggested among other existent techniques 15'16. In

the free vibrational analysis of the present problem,

the random nature of the stiffness matrix, eigen-

values, and eigenvectors are studied using a Taylor

series expansion up to second order about the mean

of each random <_ariable. The present formulation

follows the approach followed by Librescu et at. l°

Opposed to the work done by Librescu et al., the

present formulation can use results provided by com-

mercial finite element codes, greatly reducing the

number of calculations, and calculates the sensitivity

of the eigenvalues up to the second-order approxima-

tion.

Therefore, the random nature of the elastic stiff-

ness. K, is expanded in terms of the mean-centered

zeroth-, first-, and second-order rates of change with

respect to the random variables as

K(xl, x2,. •., x,_) =

K ° + _ K[_, + _ K,j =::
_=1 t=l j=l

(41)

K ° = K ==(u1,*,2,..,*,.)

K_ = __OKox,_=(u,,u_ ..... _,)

K [J - O'2K
Oz,Oxj ==(re,u2 ..... 0-)

_i = Zi -- P,i

The eigenvalues and eigenvectors are also affected

by uncertainties in the ply angles. The perturbed

eigenvaIues and eigenvectors are expressed in terms

A(xt, x2 ..... x,_) =

i=I t----I3=1

(42)

)_0 = )k z=(m,_2 ..... u,_)

,k_ - 0A ::=(m,_,2 ..... u-)
Oxi

It 02_

"kiJ -- Ox_Ox i z=(u_,u_ ..... _,,)

Eigenvectors

{¢)(x_,z2..... z,,)} = (43)

i_2-[ n

'=1 t=l )=1

{@} = (0} =(.,,,,,.....,,.)

O{,N _=(,,,,......._,.

{o,']}= o_{_}.=(.,,_._....
Ox,Ox: .u, )

After substituting Eqs. (42), (43), and (44) into Eq.

(39), the stochastic eigenvalue problem is expressed

as

K ° + K[e, + 72
tml t=l j=l

1 _', d91t:.x V°+ 0[_,+_ A., ,J''_
_=1 _=1 j=l

= A° + x_, + _ --,-,-_
$=L I=I )=l

" (44)
_=1 t=l 3=1

The uncertainties in the random variables are in

general small. As a consequence, in the applied per-

turbation technique it is sufficient to only consider

the first and second derivatives of eigenvectors and
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eigenvalues with respect to the random variables. By

equating the zeroth order terms of e, in Eq. (44),

an eigenvalue problem for the mean-valued system

is obtained. From which, the mean-centered zeroth

derivative eigenva[ues and associated eigenvectors

are obtained

[g °-A°M °] {0 °} =0 (45)

Premultiplying the first and second order terms of _,

in Eq. (44) by {4)°} T and simplifying, the following

expressions are obtained

{_o}_[K_-A;MO]{,ot = 0 (46)
1I li 0{:V [_, - _,,M]{,o} : 0 (47)

This results in expressions for the mean-centered

first and second eigenvalue derivatives:

: { o}T[,<] (48)
{4)o} T [M o] {¢0}

= {:1 {:t
{(;b°}r[M°]{¢ °}

The advantage of this method is that the eigenvalue

problem needs to be solved only once. The sen-

sitivity analysis is done by using results from the

mean-valued eigenvalue problem. This results in a

great computational saving.

When studying the effect of uncertainties of ran-

dom variables on the fundamental natural frequen-

cies, it is convenient to study their squared value,

i.e., eigenvalues. Ang 16 gives a good description on

statistical analysis.

The mean value of the eigenvalue for random vari-

ables is obtained by taking the expected value of Eq.

(43)

1_-_ _-_ l' E[e,e,] (50)

_-=-i j=l

The variance of the eigenvalues is obtained as

VariA] = Eli _] -/_ (51)

For symmetrically distributed independent ran-

dom variables,

Var[A] = (52)

_, _, E[_;]+

l
- - E[e,2IE[E_] }
4

i=L k=l

70F 11

where

E[d]

E[d4] =

E[s,2IE[s_] =

and Nsam is the

thousand in this work.

The standard deviation is calculated as

N,.. (xq -/_,)2
X: ._.o7.:i
q=l

N,o. (xq - _,)-_(zq-/_k)"_
X: N-;=--_
q----1

number of samples, equal to ten

_ =

Calculating derivatives

(53)

The above formulation only requires the calcula-

tion of the derivatives of the stiffness matrix. These

derivatives are obtained by taking the derivatives

of the equivalent bending-stiffness matrix, eq. (18).

However, the derivative for the first two rows and

columns (reduced bending-stiffness matrix) are more

involved. Various numerical schemes exist to eval-

uate these derivatives. When using some of these

numerical schemes, ill-conditioning could be a prob-

lem. This problem can be avoided by the following

formulation which allows the derivatives to be ob-

tained exactly by numerical multiplication. The

technique consists in taking derivatives of eq. (17)

[DR],_, = [D,,,] _,- (54)

[D,.,I]z' [Ou.l,] -I [D,r,t] -

[DI.11] [Du.n]2 l, [Du,I] -

[D,,,,,] [D,I.,,}-l [Ou.,],_,

[DR],=. _, = [D,.,].=. =, -

[D,.u] .... , [Du.H] -1 [D,,.,] -

[D,.I,] _. [O,l.ll]_: [D,I.ll -

[Dl.ll] z. [D,I.,,]-' [Du.,] ::, -

[D_,.],_, [n.,.]_ _.[DH._}-

[DI.II][Du.n]] _,z, [Du.i] -

[D_,u],_, [Du.H] -_ [D_,_] _. -

[Dr,u] [D,,,.19, [Du.I] _, -

[D_.u] [Du.u] -_ [Dn,I] .. _,

(55)

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS
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90/-4.5/--45/90 L.amtnatecl Beam
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1
i

1
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Figure I: Dimensionless Eigenvalue distribution for MCS

and SFEA for a thin symmetrically 4-ply laminated
beams

Figure 2: Dimensionless Eigenvalue distribution for MCS

and SFEA for a thin unsymmetrically 4-ply laminated

beams

The derivatives of [Dtt,tt]-1

following matrix definition

lOft,it] -l [Du,u] = [1]

and these derivatives being

are calculated using the

[D ]-l11,11 ,x,

-[Dtt,u] -l [Dtt,tt _, [D.,u] -l

(56)

(57)

-[Du./tl_l[Dll,lt],=,[DH.H] -l -

[D11,11]_t,[Dtt,ttl,z,[Ou,.'t]-'-

[Dtt..,/] -t [Dtt,tt] z, _, [Dtl.._l] -_

(58)

i'i

],t
I
i

°i!

Dimensm_le_ Fund_nent, aJ E=genvalu_ _or a

9G/-45,'30/O/_30/-45F_ Lam_atea Beam

O_nens,,o_le_ Fundarz_n_ll E_e_wslue

RESULTS

The numerical results are obtained for a can-

tilevered thin laminated beam. The plies are as-

sumed to be made of Graphite-Epoxy. The beam's

material and geometrical properties used in the anal-

ysis are§:

Materid density:

p = t.449 x 10 -4 slugs
in 3

Major in-plane Poisson's ratio:

uzv = 0.30

All properties are assumed to be uniform throughout the
bEtaJn

Figure 3: Dimensionless Eigenvalue distribution for MCS

and SFEA for a thin symmetrically 8-ply laminated

beams

Young's Modulus:

Evu = 1.36x L06psi

E== = 13.75E w

G=v = 0.55E_

G_= = 0.25Evv

G=z = 0.25Evv

Shear Modulus:
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Table 1: Statistics analysis

Ply-orientations

//,)_ a_ x 10 -2

MSC SFEA MSC SFEA

[90/-45], 1.63468 t.63925 0.41519 0.41928

[90/-45/0/25] 4.10664 4.12107 6.44410 6.67425

[90/-45/30/0]s 3.23110 3.23559 2.79163 2.80235

[90/-45/30/0/

/25/45/-90/-30] 4.53781 4.54736 9.51499 9.69171

Din_ns_onlesS Fun(_'nental Eigenvalull lot a

90/--4_30/0t25/45/-90/-30 Laminated Beam

I

i

_OSt-

04_"

I

°3 _S 4 45 $ $$

O_n,ens_neJess Func_,r_n_ E(_ovaJue

Senm_ ot the FunO,tmental E_JenvaJue for a

90/.-4&'_ LammateO Beam

Figure 4: Dimensionless Eigenvalue distribution for MCS

and SFEA for a thin unsymmetrically 8-ply laminated

beams

Figure 5: Sensitivity of the dimensionless eigenvalue for

a thin symmetrically 4-ply laminated beams

Beam's dimer_sions

Width : bo = 1.0 in

Thickness : ho = 0.5 bo

Length : Lbea,n = 30.0 ho

For both the stochastic finite element analysis

and Monte Carlo Simulation ten beam elements

were used and four different laminated beams are

considered: (i) symmetrically laminated cantilever

beam with four plies, (ii) and unsymmetrically lam-

inated cantilever beam with four plies, (iii) symmet-

rically laminated cantilever beam with eight plies,

(iv) and unsymmetrically laminated cantilever beam

with eight plies.

The natural frequencies are non-dimensionalized

with respect to the deterministic quantities as fol-

lows

&n = _nLbea'n P (59)
ho Evv

In general, the ply-angle uncertainties are between

+2 ° . However, results show the effect in considering

twice the uncertainty in ply orientations, i.e., from

-5 ° to 5 ° . The statistical analysis is shown in Table

9oF 11
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S_1_/of the Fun_."ne¢_¢ EJgomat_ for =

9Q/-4_0/25 Lammauld Beam

a T.....

S4m_v_y of I_ Fur_an_n_l E_)errvaJue Ior a
9_-4,,St30,'_t2_45/-g(Y-30 LammatIKI 8earn

Sarr_e n_ Sam_ numOer

Figure 6: Sensitivity of the dimensionless eigenvalue for
a thin unsymmetrically 4-ply laminated beams

Figure 8: Sensitivity of the dimensionless eigenvalue for

a thin unsymmetrically 8-ply laminated beams

S_d)" of ¢_e F_ntaJ EK_caJue for a

90/-,sS/30,fl_30/-45FJ0 Lamma_ 8sam

$41_41 rt_Tl04¢

Figure 7: Sensitivity of the dimensionless eigenvalue for

a thin symmetrically 8-ply laminated beams

1,

The results in Figures (I), (2), (3), and (4) show

that the present model has a good correlation when

compared to MCS. These results are obtained for

only 1000 samples opposed to ten thousand us-

ing MCS. As the number of plies is increased the

model correlated even better with MCS. The mean-

valued fundamental eigenvalues are accurately ob-

tained with one hundred samples using the present

model opposed to ten thousand Monte Carlo Simu-

lations•

Figures (5), (6), (7), and (8) show that the eigen-

values are sensitive to the first derivatives and the

second derivatives are not influential. These fig-

ures show that the sensitivity analysis is significant,

therefore the ply angle uncertainties can play an

important roll in affecting free vibrations of symmet-

rically and unsymmetrically laminated thin beams.

CONCLUSIONS

Monte Carlo Simulation has been applied to thin,

symmetric and unsymmetrically laminated beams

with randomness in ply orientation to study the free

vibrations. At least ten thousand realizations of the

Monte Carlo sampling have been performed to im-

prove the accuracy of the analysis.

A second stochastic finite element approach has

been developed using perturbation methods. Using

Taylor Series expansion the eigenva[ues has been ex-

pressed as mean-valued and probabilistic quantities.

The accuracy of the results have been compared to

those obtained by Monte Carlo Simulation.

An elegant way to obtain sensitivity derivatives

is detailed. The present method is advantageous

over other techniques because the eigenvalue prob-

lem needs to be solved only once. With only one

hundred samples our model agrees with ten thou-

sand MCS.

Based upon the results, this method results in a

great computational saving when one is interested

in predicting the statistics of the fundamental natu-

ral frequency of unsymmetric laminated beam in the

presence of ply-angle uncertainties.
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